Veritas InfoScale™ 8.0.2 Storage and Availability Management for Oracle Databases - AIX, Linux, Solaris
- Section I. Storage Foundation High Availability (SFHA) management solutions for Oracle databases
- Overview of Storage Foundation for Databases
- About Veritas File System
- Overview of Storage Foundation for Databases
- Section II. Deploying Oracle with Veritas InfoScale products
- Deployment options for Oracle in a Storage Foundation environment
- Deploying Oracle with Storage Foundation
- Setting up disk group for deploying Oracle
- Creating volumes for deploying Oracle
- Creating VxFS file system for deploying Oracle
- Deploying Oracle in an off-host configuration with Storage Foundation
- Deploying Oracle with High Availability
- Deploying Oracle with Volume Replicator (VVR) for disaster recovery
- Deployment options for Oracle in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving Oracle database performance
- About database accelerators
- Improving database performance with Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager in the Veritas InfoScale products environment
- Improving database performance with Veritas Cached Oracle Disk Manager
- About Cached ODM in SFHA environment
- Configuring Cached ODM in SFHA environment
- Administering Cached ODM settings with Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Generating summary reports of historical activity by using Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Improving database performance with Quick I/O
- About Quick I/O
- Improving database performance with Cached Quick I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Volume-level snapshots
- About Reverse Resynchronization in volume-level snapshots (FlashSnap)
- Storage Checkpoints
- About FileSnaps
- Considerations for Oracle point-in-time copies
- Administering third-mirror break-off snapshots
- Administering space-optimized snapshots
- Creating a clone of an Oracle database by using space-optimized snapshots
- Administering Storage Checkpoints
- Database Storage Checkpoints for recovery
- Administering FileSnap snapshots
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for Oracle
- Understanding storage tiering with SmartTier
- Configuring and administering SmartTier
- Configuring SmartTier for Oracle
- Optimizing database storage using SmartTier for Oracle
- Extent balancing in a database environment using SmartTier for Oracle
- Configuring SmartTier for Oracle
- SmartTier use cases for Oracle
- Compressing files and databases to optimize storage costs
- Using the Compression Advisor tool
- Section VII. Managing Oracle disaster recovery
- Section VIII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- About tuning Veritas Volume Manager (VxVM)
- About tuning VxFS
- About tuning Oracle databases
- About tuning Solaris for Oracle
- Troubleshooting SFDB tools
- About troubleshooting Storage Foundation for Databases (SFDB) tools
- About the vxdbd daemon
- Resources for troubleshooting SFDB tools
- Manual recovery of Oracle database
- Storage Foundation for Databases command reference for the releases prior to 6.0
- Preparing storage for Database FlashSnap
- About creating database snapshots
- FlashSnap commands
- Creating a snapplan (dbed_vmchecksnap)
- Validating a snapplan (dbed_vmchecksnap)
- Displaying, copying, and removing a snapplan (dbed_vmchecksnap)
- Creating a snapshot (dbed_vmsnap)
- Backing up the database from snapshot volumes (dbed_vmclonedb)
- Cloning a database (dbed_vmclonedb)
- Guidelines for Oracle recovery
- Database Storage Checkpoint Commands
- Section IX. Reference
- Appendix A. VCS Oracle agents
- Appendix B. Sample configuration files for clustered deployments
- Appendix C. Database FlashSnap status information
- Appendix D. Using third party software to back up files
About Oracle Disk Manager in the Veritas InfoScale products environment
Veritas Extension for Oracle Disk Manager enhances file management and disk I/O throughput. The features of Oracle Disk Manager are optimized for Oracle databases in a Veritas File System environment. Oracle Disk Manager enables you to improve database throughput for I/O intensive workloads with special I/O optimization.
Veritas Extension for Oracle Disk Manager supports Oracle Resilvering. With Oracle Resilvering, the storage layer receives information from the Oracle database as to which regions or blocks of a mirrored datafile to resync after a system crash. Oracle Resilvering avoids overhead from the Volume Manager Dirty Region Logging (DRL) for files which Oracle itself can recover, which increases performance.
Oracle Disk Manager reduces administrative overhead by providing enhanced support for Oracle Managed Files. Veritas Extension for Oracle Disk Manager has Quick I/O-like capabilities, but is transparent to the user. Unlike Veritas InfoScale Quick I/O, files managed using Veritas Extension for Oracle Disk Manager do not require special file naming conventions. The Oracle Disk Manager interface uses regular database files.
Oracle Disk Manager reduces administrative overhead by providing enhanced support for Oracle Managed Files. Veritas Extension for Oracle Disk Manager is transparent to the user. The Oracle Disk Manager interface uses regular database files.
Note:
Quick I/O is not supported on Linux.
Database administrators can choose the datafile type used with the Oracle product. Historically, choosing between file system files and raw devices was based on manageability and performance. The exception to this is a database intended for use with Oracle Parallel Server, which requires raw devices on most platforms. If performance is not as important as administrative ease, file system files are typically the preferred file type. However, while an application may not have substantial I/O requirements when it is first implemented, I/O requirements may change. If an application becomes dependent upon I/O throughput, converting datafiles from file system to raw devices is often necessary.
Oracle Disk Manager was designed to work with Oracle databases to provide both performance and manageability. Oracle Disk Manager provides support for Oracle's file management and I/O calls for database storage on VxFS file systems and on raw volumes or partitions. This feature is provided as a dynamically-loaded shared library with which Oracle binds when it is loaded. The Oracle Disk Manager library works with an Oracle Disk Manager driver that is loaded in the kernel to perform its functions.
Note:
Raw devices are not supported on Linux.
The benefits of using Oracle Disk Manager are as follows:
True kernel asynchronous I/O for files and raw devices
True kernel asynchronous I/O for files
Reduced system call overhead
Improved file system layout by preallocating contiguous files on a VxFS file system
Performance on file system files that is equivalent to raw devices
Transparency to users