Veritas InfoScale™ 8.0.2 Storage and Availability Management for Oracle Databases - AIX, Linux, Solaris
- Section I. Storage Foundation High Availability (SFHA) management solutions for Oracle databases
- Overview of Storage Foundation for Databases
- About Veritas File System
- Overview of Storage Foundation for Databases
- Section II. Deploying Oracle with Veritas InfoScale products
- Deployment options for Oracle in a Storage Foundation environment
- Deploying Oracle with Storage Foundation
- Setting up disk group for deploying Oracle
- Creating volumes for deploying Oracle
- Creating VxFS file system for deploying Oracle
- Deploying Oracle in an off-host configuration with Storage Foundation
- Deploying Oracle with High Availability
- Deploying Oracle with Volume Replicator (VVR) for disaster recovery
- Deployment options for Oracle in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving Oracle database performance
- About database accelerators
- Improving database performance with Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager in the Veritas InfoScale products environment
- Improving database performance with Veritas Cached Oracle Disk Manager
- About Cached ODM in SFHA environment
- Configuring Cached ODM in SFHA environment
- Administering Cached ODM settings with Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Generating summary reports of historical activity by using Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Improving database performance with Quick I/O
- About Quick I/O
- Improving database performance with Cached Quick I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Volume-level snapshots
- About Reverse Resynchronization in volume-level snapshots (FlashSnap)
- Storage Checkpoints
- About FileSnaps
- Considerations for Oracle point-in-time copies
- Administering third-mirror break-off snapshots
- Administering space-optimized snapshots
- Creating a clone of an Oracle database by using space-optimized snapshots
- Administering Storage Checkpoints
- Database Storage Checkpoints for recovery
- Administering FileSnap snapshots
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for Oracle
- Understanding storage tiering with SmartTier
- Configuring and administering SmartTier
- Configuring SmartTier for Oracle
- Optimizing database storage using SmartTier for Oracle
- Extent balancing in a database environment using SmartTier for Oracle
- Configuring SmartTier for Oracle
- SmartTier use cases for Oracle
- Compressing files and databases to optimize storage costs
- Using the Compression Advisor tool
- Section VII. Managing Oracle disaster recovery
- Section VIII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- About tuning Veritas Volume Manager (VxVM)
- About tuning VxFS
- About tuning Oracle databases
- About tuning Solaris for Oracle
- Troubleshooting SFDB tools
- About troubleshooting Storage Foundation for Databases (SFDB) tools
- About the vxdbd daemon
- Resources for troubleshooting SFDB tools
- Manual recovery of Oracle database
- Storage Foundation for Databases command reference for the releases prior to 6.0
- Preparing storage for Database FlashSnap
- About creating database snapshots
- FlashSnap commands
- Creating a snapplan (dbed_vmchecksnap)
- Validating a snapplan (dbed_vmchecksnap)
- Displaying, copying, and removing a snapplan (dbed_vmchecksnap)
- Creating a snapshot (dbed_vmsnap)
- Backing up the database from snapshot volumes (dbed_vmclonedb)
- Cloning a database (dbed_vmclonedb)
- Guidelines for Oracle recovery
- Database Storage Checkpoint Commands
- Section IX. Reference
- Appendix A. VCS Oracle agents
- Appendix B. Sample configuration files for clustered deployments
- Appendix C. Database FlashSnap status information
- Appendix D. Using third party software to back up files
SFDB logs
The SFDB commands generate logs that can be used to narrow down to the actual problem.
Log files are generated in the location
/var/vx/vxdba/logs
.There are two kind of logs:
User logs are generated in the <user> folder.
Logs from vxdbd and other root operations are generated in the logs folder.
The user log files have the naming convention: log_<service>_<app>_<service_id><app_id>.log.
A system.log is also present until vxsfadm can recognize the service and the application identifiers.
The vxdbd logs have the name vxsfaed.log.
A system.log also exists for all root operations performed.
The log files are archived after they reach a threshold of 1MB and are backed up as log_<service><application><application_identifier><service_identifier>.log.<randomnumber>
Every log file has a pointer to the previously archived log.
Log levels can be set using the environment variable SFAE_LOG_LEVEL.
The following additional environment variables can be set that override SFAE_LOG_LEVEL:
APP_LOG_LEVEL: Log application-specific operations.
SER_LOG_LEVEL: Log VxFS/VxVM stack specific operations.
REP_LOG_LEVEL: Log repository operations.
FSM_LOG_LEVEL: Log vxsfadm engine-specific operations.
The log levels can be set to the following levels:
FATAL: Logs only fatal messages.
ERROR: Logs errors and above messages.
WARN: Logs warning and above messages.
INFO: Logs info and above messages.
DEBUG: Logs debug and above messages.
The default log level is DEBUG.
The actual log messages appear in the following format:
yyyy/mm/dd hh:mm:ss: <loglevel> : <module> : <message>
For example: