Storage Foundation 7.4.1 Administrator's Guide - Linux
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- Volume encryption
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Veritas File System I/O
- Veritas Volume Manager I/O
- Managing application I/O workloads using maximum IOPS settings
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Sample supported root disk layouts for encapsulation
- Encapsulating and mirroring the root disk
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
Monitoring fragmentation
Fragmentation reduces performance and availability. Veritas recommends regular use of the fragmentation reporting and reorganization facilities of the fsadm command.
The easiest way to ensure that fragmentation does not become a problem is to schedule regular defragmentation runs using the cron command.
Defragmentation scheduling should range from weekly (for frequently used file systems) to monthly (for infrequently used file systems). Extent fragmentation should be monitored with the fsadm command.
To determine the degree of fragmentation, use the following factors:
Percentage of free space in extents of less than 8 blocks in length
Percentage of free space in extents of less than 64 blocks in length
Percentage of free space in extents of length 64 blocks or greater
An unfragmented file system has the following characteristics:
Less than 1 percent of free space in extents of less than 8 blocks in length
Less than 5 percent of free space in extents of less than 64 blocks in length
More than 5 percent of the total file system size available as free extents in lengths of 64 or more blocks
A badly-fragmented file system has one or more of the following characteristics:
Fragmentation can also be determined based on the fragmentation index. Two types of indices are generated by the fsadm command: the file fragmentation index and the free space fragmentation index. Both of these indices range between 0 and 100, and give an idea about the level of file fragmentation and free space fragmentation, respectively. A value of 0 for the fragmentation index means that the file system has no fragmentation, and a value of 100 means that the file system has the highest level of fragmentation. Based on the index, you should use the appropriate defragmentation option with the fsadm command. For example if the file fragmentation index is high, the fsadm command should be run with the -e option. If the free space fragmentation index is high, the fsadm command should be run with -C option. When the fsadm command is run with the -e option, internally it performs free space defragmentation before performing file defragmentaion.
The optimal period for scheduling of extent reorganization runs can be determined by choosing a reasonable interval, scheduling fsadm runs at the initial interval, and running the extent fragmentation report feature of fsadm before and after the reorganization.
The "before" result is the degree of fragmentation prior to the reorganization. If the degree of fragmentation is approaching the figures for bad fragmentation, reduce the interval between fsadm runs. If the degree of fragmentation is low, increase the interval between fsadm runs.
The "after" result is an indication of how well the reorganizer has performed. The degree of fragmentation should be close to the characteristics of an unfragmented file system. If not, it may be a good idea to resize the file system; full file systems tend to fragment and are difficult to defragment. It is also possible that the reorganization is not being performed at a time during which the file system in question is relatively idle.
Directory reorganization is not nearly as critical as extent reorganization, but regular directory reorganization improves performance. It is advisable to schedule directory reorganization for file systems when the extent reorganization is scheduled. The following is a sample script that is run periodically at 3:00 A.M. from cron for a number of file systems:
outfile=/var/spool/fsadm/out.'/bin/date +'%m%d'' for i in /home /home2 /project /db do /bin/echo "Reorganizing $i" /usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -e -E -s $i /usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -s -d -D $i done > $outfile 2>&1