Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- About Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Hot-relocation
- Volume sets
- Provisioning new usable storage
- Administering disks
- About disk management
- Disk devices
- Discovering and configuring newly added disk devices
- Partial device discovery
- Discovering disks and dynamically adding disk arrays
- Third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing supported disks in the DISKS category
- Displaying details about a supported array library
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Disks under VxVM control
- Changing the disk-naming scheme
- About the Array Volume Identifier (AVID) attribute
- Discovering the association between enclosure-based disk names and OS-based disk names
- About disk installation and formatting
- Displaying or changing default disk layout attributes
- Adding a disk to VxVM
- RAM disk support in VxVM
- Veritas Volume Manager co-existence with Oracle Automatic Storage Management (ASM) disks
- Rootability
- Displaying disk information
- Controlling Powerfail Timeout
- Removing disks
- Removing a disk from VxVM control
- Removing and replacing disks
- Enabling a disk
- Taking a disk offline
- Renaming a disk
- Reserving disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Disabling multi-pathing and making devices invisible to VxVM
- Enabling multi-pathing and making devices visible to VxVM
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Setting customized names for DMP nodes
- Administering DMP using vxdmpadm
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- Displaying extended device attributes
- Suppressing or including devices for VxVM or DMP control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers or array ports
- Enabling I/O for paths, controllers or array ports
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Subpaths Failover Groups (SFG)
- Configuring Low Impact Path Probing
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Displaying information about the DMP error-handling thread
- Configuring array policy modules
- Online dynamic reconfiguration
- About online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Removing LUNs dynamically from an existing target ID
- Adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Cleaning up the operating system device tree after removing LUNs
- Upgrading the array controller firmware online
- Replacing a host bus adapter
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Adding a disk to a disk group
- Removing a disk from a disk group
- Moving disks between disk groups
- Deporting a disk group
- Importing a disk group
- Handling of minor number conflicts
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Renaming a disk group
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Disabling a disk group
- Destroying a disk group
- Upgrading the disk group version
- About the configuration daemon in VxVM
- Backing up and restoring disk group configuration data
- Using vxnotify to monitor configuration changes
- Working with existing ISP disk groups
- Creating and administering subdisks and plexes
- About subdisks
- Creating subdisks
- Displaying subdisk information
- Moving subdisks
- Splitting subdisks
- Joining subdisks
- Associating subdisks with plexes
- Associating log subdisks
- Dissociating subdisks from plexes
- Removing subdisks
- Changing subdisk attributes
- About plexes
- Creating plexes
- Creating a striped plex
- Displaying plex information
- Attaching and associating plexes
- Taking plexes offline
- Detaching plexes
- Reattaching plexes
- Moving plexes
- Copying volumes to plexes
- Dissociating and removing plexes
- Changing plex attributes
- Creating volumes
- About volume creation
- Types of volume layouts
- Creating a volume
- Using vxassist
- Discovering the maximum size of a volume
- Disk group alignment constraints on volumes
- Creating a volume on any disk
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a volume with a version 0 DCO volume
- Creating a volume with a version 20 DCO volume
- Creating a volume with dirty region logging enabled
- Creating a striped volume
- Mirroring across targets, controllers or enclosures
- Mirroring across media types (SSD and HDD)
- Creating a RAID-5 volume
- Creating tagged volumes
- Creating a volume using vxmake
- Initializing and starting a volume
- Accessing a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- About volume administration
- Displaying volume information
- Monitoring and controlling tasks
- About SF Thin Reclamation feature
- Reclamation of storage on thin reclamation arrays
- Monitoring Thin Reclamation using the vxtask command
- Using SmartMove with Thin Provisioning
- Admin operations on an unmounted VxFS thin volume
- Stopping a volume
- Starting a volume
- Resizing a volume
- Adding a mirror to a volume
- Removing a mirror
- Adding logs and maps to volumes
- Preparing a volume for DRL and instant snapshots
- Specifying storage for version 20 DCO plexes
- Using a DCO and DCO volume with a RAID-5 volume
- Determining the DCO version number
- Determining if DRL is enabled on a volume
- Determining if DRL logging is active on a volume
- Disabling and re-enabling DRL
- Removing support for DRL and instant snapshots from a volume
- Adding traditional DRL logging to a mirrored volume
- Upgrading existing volumes to use version 20 DCOs
- Setting tags on volumes
- Changing the read policy for mirrored volumes
- Removing a volume
- Moving volumes from a VM disk
- Enabling FastResync on a volume
- Performing online relayout
- Converting between layered and non-layered volumes
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- About hot-relocation
- How hot-relocation works
- Configuring a system for hot-relocation
- Displaying spare disk information
- Marking a disk as a hot-relocation spare
- Removing a disk from use as a hot-relocation spare
- Excluding a disk from hot-relocation use
- Making a disk available for hot-relocation use
- Configuring hot-relocation to use only spare disks
- Moving relocated subdisks
- Modifying the behavior of hot-relocation
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- About the cluster functionality of VxVM
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Requesting node status and discovering the master node
- Changing the CVM master manually
- Determining if a LUN is in a shareable disk group
- Listing shared disk groups
- Creating a shared disk group
- Importing disk groups as shared
- Handling cloned disks in a shared disk group
- Converting a disk group from shared to private
- Moving objects between shared disk groups
- Splitting shared disk groups
- Joining shared disk groups
- Changing the activation mode on a shared disk group
- Setting the disk detach policy on a shared disk group
- Setting the disk group failure policy on a shared disk group
- Creating volumes with exclusive open access by a node
- Setting exclusive open access to a volume by a node
- Displaying the cluster protocol version
- Displaying the supported cluster protocol version range
- Recovering volumes in shared disk groups
- Obtaining cluster performance statistics
- Administering CVM from the slave node
- Administering sites and remote mirrors
- About sites and remote mirrors
- Making an existing disk group site consistent
- Configuring a new disk group as a Remote Mirror configuration
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Examples of storage allocation by specifying sites
- Displaying site information
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
- Glossary
How online relayout works
Online relayout allows you to change the storage layouts that you have already created in place without disturbing data access. You can change the performance characteristics of a particular layout to suit your changed requirements. You can transform one layout to another by invoking a single command.
For example, if a striped layout with a 128KB stripe unit size is not providing optimal performance, you can use relayout to change the stripe unit size.
File systems mounted on the volumes do not need to be unmounted to achieve this transformation provided that the file system (such as Veritas File System) supports online shrink and grow operations.
Online relayout reuses the existing storage space and has space allocation policies to address the needs of the new layout. The layout transformation process converts a given volume to the destination layout by using minimal temporary space that is available in the disk group.
The transformation is done by moving one portion of data at a time in the source layout to the destination layout. Data is copied from the source volume to the temporary area, and data is removed from the source volume storage area in portions. The source volume storage area is then transformed to the new layout, and the data saved in the temporary area is written back to the new layout. This operation is repeated until all the storage and data in the source volume has been transformed to the new layout.
The default size of the temporary area used during the relayout depends on the size of the volume and the type of relayout. For volumes larger than 50MB, the amount of temporary space that is required is usually 10% of the size of the volume, from a minimum of 50MB up to a maximum of 1GB. For volumes smaller than 50MB, the temporary space required is the same as the size of the volume.
The following error message displays the number of blocks required if there is insufficient free space available in the disk group for the temporary area:
tmpsize too small to perform this relayout (nblks minimum required)
You can override the default size used for the temporary area by using the tmpsize attribute to vxassist.
See the vxassist(1M) manual page.
As well as the temporary area, space is required for a temporary intermediate volume when increasing the column length of a striped volume. The amount of space required is the difference between the column lengths of the target and source volumes. For example, 20GB of temporary additional space is required to relayout a 150GB striped volume with 5 columns of length 30GB as 3 columns of length 50GB. In some cases, the amount of temporary space that is required is relatively large. For example, a relayout of a 150GB striped volume with 5 columns as a concatenated volume (with effectively one column) requires 120GB of space for the intermediate volume.
Additional permanent disk space may be required for the destination volumes, depending on the type of relayout that you are performing. This may happen, for example, if you change the number of columns in a striped volume.
Figure: Example of decreasing the number of columns in a volume shows how decreasing the number of columns can require disks to be added to a volume.
Note that the size of the volume remains the same but an extra disk is needed to extend one of the columns.
The following are examples of operations that you can perform using online relayout:
Remove parity from a RAID-5 volume to change it to a concatenated, striped, or layered volume.
Figure: Example of relayout of a RAID-5 volume to a striped volume shows an example of applying relayout a RAID-5 volume.
Note that removing parity decreases the overall storage space that the volume requires.
Add parity to a volume to change it to a RAID-5 volume.
Figure: Example of relayout of a concatenated volume to a RAID-5 volume shows an example.
Note that adding parity increases the overall storage space that the volume requires.
Change the number of columns in a volume.
Figure: Example of increasing the number of columns in a volume shows an example of changing the number of columns.
Note that the length of the columns is reduced to conserve the size of the volume.
Change the column stripe width in a volume.
Figure: Example of increasing the stripe width for the columns in a volume shows an example of changing the column stripe width.