Please enter search query.
Search <book_title>...
Storage Foundation Cluster File System High Availability 7.4 Administrator's Guide - AIX
Last Published:
2019-07-18
Product(s):
InfoScale & Storage Foundation (7.4)
Platform: AIX
- Section I. Introducing Storage Foundation Cluster File System High Availability
- Overview of Storage Foundation Cluster File System High Availability
- About Veritas File System
- About Storage Foundation Cluster File System (SFCFS)
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- How Storage Foundation Cluster File System High Availability works
- About Storage Foundation Cluster File System High Availability architecture
- About Veritas File System features supported in cluster file systems
- About single network link and reliability
- About I/O fencing
- About preventing data corruption with I/O fencing
- About I/O fencing components
- About server-based I/O fencing
- About secure communication between the SFCFSHA cluster and CP server
- How Cluster Volume Manager works
- Overview of clustering
- Cluster Volume Manager (CVM) tolerance to storage connectivity failures
- Storage disconnectivity and CVM disk detach policies
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Multiple host failover configurations
- About Flexible Storage Sharing
- Overview of Storage Foundation Cluster File System High Availability
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation Cluster File System High Availability
- Administering Storage Foundation Cluster File System High Availability and its components
- Administering CFS
- About the mount, fsclustadm, and fsadm commands
- When the CFS primary node fails
- About Snapshots on SFCFSHA
- Administering VCS
- Administering CVM
- About setting cluster node preferences for master failover
- About changing the CVM master manually
- Importing disk groups as shared
- Administering Flexible Storage Sharing
- Administering ODM
- About administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- About the vxfentsthdw utility
- Administering SFCFSHA global clusters
- Using Clustered NFS
- Understanding how Clustered NFS works
- Configure and unconfigure Clustered NFS
- Reconciling major and minor numbers for NFS shared disks
- Administering Clustered NFS
- Samples for configuring a Clustered NFS
- Using Common Internet File System
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering Storage Foundation Cluster File System High Availability and its components
- Section V. Optimizing I/O performance
- Section VI. Veritas Extension for Oracle Disk Manager
- Using Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager
- About Oracle Disk Manager and Oracle Managed Files
- Using Cached ODM
- Using Veritas Extension for Oracle Disk Manager
- Section VII. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VIII. Optimizing storage with Storage Foundation Cluster File System High Availability
- Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section IX. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data
- Compressing files
- About compressing files
- Use cases for compressing files
- Section X. Administering storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Extending an LVM rootvg that is enabled for DMP
- Quotas
- Using Veritas File System quotas
- File Change Log
- Section XI. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- About LLT tunable parameters
- About GAB tunable parameters
- About VXFEN tunable parameters
- Appendix C. Command reference
- Appendix D. Creating a starter database
Removing the mirror for the root volume group (rootvg)
To remove redundancy to the root volume group, remove the mirror of the root volume group. For a root volume group that is under DMP control, use the operating system commands to remove the mirror.
To unmirror the root volume group
- View the configuration of the root volume group.
# lsvg -p rootvg rootvg: PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION hdisk70 active 639 361 127..05..00..101..128 hdisk73 active 639 639 128..128..127..128..128
# lspv | grep -w rootvg hdisk70 00f60bfea7406c01 rootvg active hdisk72 00f60bfea7406c01 rootvg active hdisk73 00f60bfe000d0356 rootvg active hdisk74 00f60bfe000d0356 rootvg active
- Remove the mirror from the root volume group.
# unmirrorvg rootvg 0516-1246 rmlvcopy: If hd5 is the boot logical volume, please run 'chpv -c <diskname>' as root user to clear the boot record and avoid a potential boot off an old boot image that may reside on the disk from which this logical volume is moved/removed. 0516-1804 chvg: The quorum change takes effect immediately. 0516-1144 unmirrorvg: rootvg successfully unmirrored, user should perform bosboot of system to reinitialize boot records. Then, user must modify bootlist to just include: hdisk70.
- As the output of the unmirrorvg command in step 2 indicates, run the chpv -c command on the paths of the device that formerly was the mirror. In this example, the paths are hdisk73 and hdisk74.
# chpv -c hdisk74
# chpv -c hdisk73
- Set the boot list to remove the paths for the former mirror. In this example, remove the paths for hdisk73 and hdisk74. The boot list includes the paths hdisk70 and hdisk72.
# bootlist -m normal -o hdisk70 blv=hd5 hdisk72 blv=hd5 hdisk73 blv=hd5 hdisk74 blv=hd5
# bootlist -m normal hdisk70 hdisk72 blv=hd5
# bootlist -m normal -o hdisk70 blv=hd5 hdisk72 blv=hd5
- As the output of the unmirrorvg command in step 2 indicates, run bosboot command to reflect the changes. If the bosboot command fails on
/dev/ipldevice
, then retry the command on the paths of current boot disk until it succeeds.# bosboot -ad /dev/ipldevice A previous bosdebug command has changed characteristics of this boot image. Use bosdebug -L to display what these changes are. bosboot: Boot image is 56863 512 byte blocks.
- Verify that the mirror of the rootvg is removed.
# lspv | grep -w rootvg hdisk70 00f60bfea7406c01 rootvg active hdisk72 00f60bfea7406c01 rootvg active
# lsvg -p rootvg rootvg: PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION hdisk70 active 639 361 127..05..00..101..128