Veritas InfoScale™ 7.4 Solutions Guide - Solaris
- Section I. Introducing Veritas InfoScale
- Section II. Solutions for Veritas InfoScale products
- Section III. Improving database performance
- Overview of database accelerators
- Improving database performance with Veritas Quick I/O
- About Quick I/O
- Tasks for setting up Quick I/O in a database environment
- Creating DB2 database containers as Quick I/O files using qiomkfile Creating Sybase files as Quick I/O files using qiomkfile
- Preallocating space for Quick I/O files using the setext command
- Accessing regular VxFS files as Quick I/O files
- Extending a Quick I/O file
- Disabling Quick I/O
- Improving database performance with Veritas Cached Quick I/O
- Improving database performance with Veritas Concurrent I/O
- Section IV. Using point-in-time copies
- Understanding point-in-time copy methods
- Backing up and recovering
- Storage Foundation and High Availability Solutions backup and recovery methods
- Preserving multiple point-in-time copies
- Online database backups
- Backing up on an off-host cluster file system
- Database recovery using Storage Checkpoints
- Backing up and recovering in a NetBackup environment
- Off-host processing
- Creating and refreshing test environments
- Creating point-in-time copies of files
- Section V. Maximizing storage utilization
- Optimizing storage tiering with SmartTier
- About SmartTier
- About VxFS multi-volume file systems
- About VxVM volume sets
- About volume tags
- SmartTier use cases for Sybase
- Setting up a filesystem for storage tiering with SmartTier
- Relocating old archive logs to tier two storage using SmartTier
- Relocating inactive tablespaces or segments to tier two storage
- Relocating active indexes to premium storage
- Relocating all indexes to premium storage
- Optimizing storage with Flexible Storage Sharing
- Optimizing storage tiering with SmartTier
- Section VI. Migrating data
- Understanding data migration
- Offline migration from Solaris Volume Manager to Veritas Volume Manager
- About migration from Solaris Volume Manager
- How Solaris Volume Manager objects are mapped to VxVM objects
- Overview of the conversion process
- Planning the conversion
- Preparing a Solaris Volume Manager configuration for conversion
- Setting up a Solaris Volume Manager configuration for conversion
- Converting from the Solaris Volume Manager software to VxVM
- Post conversion tasks
- Converting a root disk
- Online migration of a native file system to the VxFS file system
- About online migration of a native file system to the VxFS file system
- Administrative interface for online migration of a native file system to the VxFS file system
- Migrating a native file system to the VxFS file system
- Migrating a source file system to the VxFS file system over NFS v3
- Backing out an online migration of a native file system to the VxFS file system
- VxFS features not available during online migration
- Migrating storage arrays
- Migrating data between platforms
- Overview of the Cross-Platform Data Sharing (CDS) feature
- CDS disk format and disk groups
- Setting up your system to use Cross-platform Data Sharing (CDS)
- Maintaining your system
- Disk tasks
- Disk group tasks
- Changing the alignment of a disk group during disk encapsulation
- Changing the alignment of a non-CDS disk group
- Splitting a CDS disk group
- Moving objects between CDS disk groups and non-CDS disk groups
- Moving objects between CDS disk groups
- Joining disk groups
- Changing the default CDS setting for disk group creation
- Creating non-CDS disk groups
- Upgrading an older version non-CDS disk group
- Replacing a disk in a CDS disk group
- Setting the maximum number of devices for CDS disk groups
- Changing the DRL map and log size
- Creating a volume with a DRL log
- Setting the DRL map length
- Displaying information
- Determining the setting of the CDS attribute on a disk group
- Displaying the maximum number of devices in a CDS disk group
- Displaying map length and map alignment of traditional DRL logs
- Displaying the disk group alignment
- Displaying the log map length and alignment
- Displaying offset and length information in units of 512 bytes
- Default activation mode of shared disk groups
- Additional considerations when importing CDS disk groups
- File system considerations
- Considerations about data in the file system
- File system migration
- Specifying the migration target
- Using the fscdsadm command
- Checking that the metadata limits are not exceeded
- Maintaining the list of target operating systems
- Enforcing the established CDS limits on a file system
- Ignoring the established CDS limits on a file system
- Validating the operating system targets for a file system
- Displaying the CDS status of a file system
- Migrating a file system one time
- Migrating a file system on an ongoing basis
- When to convert a file system
- Converting the byte order of a file system
- Alignment value and block size
- Disk group alignment and encapsulated disks
- Disk group import between Linux and non-Linux machines
- Migrating a snapshot volume
- Migrating from Oracle ASM to Veritas File System
- Section VII. Veritas InfoScale 4K sector device support solution
When to use point-in-time copies
The following typical activities are suitable for point-in-time copy solutions implemented using Veritas InfoScale FlashSnap:
Data backup - Many enterprises require 24 x 7 data availability. They cannot afford the downtime involved in backing up critical data offline. By taking snapshots of your data, and backing up from these snapshots, your business-critical applications can continue to run without extended downtime or impacted performance.
Providing data continuity - To provide continuity of service in the event of primary storage failure, you can use point-in-time copy solutions to recover application data. In the event of server failure, you can use point-in-time copy solutions in conjunction with the high availability cluster functionality of SFCFSHA or SFHA.
Decision support analysis and reporting - Operations such as decision support analysis and business reporting may not require access to real-time information. You can direct such operations to use a replica database that you have created from snapshots, rather than allow them to compete for access to the primary database. When required, you can quickly resynchronize the database copy with the data in the primary database.
Testing and training - Development or service groups can use snapshots as test data for new applications. Snapshot data provides developers, system testers and QA groups with a realistic basis for testing the robustness, integrity and performance of new applications.
Database error recovery - Logic errors caused by an administrator or an application program can compromise the integrity of a database. You can recover a database more quickly by restoring the database files by using Storage Checkpoints or a snapshot copy than by full restoration from tape or other backup media.
Use Storage Checkpoints to quickly roll back a database instance to an earlier point in time.
Cloning data - You can clone your file system or application data. This functionality enable you to quickly and efficiently provision virtual desktops.
All of the snapshot solutions mentioned above are also available on the disaster recovery site, in conjunction with Volume Replicator.
For more information about snapshots with replication, see the Veritas InfoScale 7.4 Replication Administrator's Guide.
Storage Foundation provides several point-in-time copy solutions that support your needs, including the following use cases:
Creating a replica database for decision support.
Backing up and recovering a database with snapshots.
Backing up and recovering an off-host cluster file system
Backing up and recovering an online database.
More Information