Veritas InfoScale™ 7.4 Solutions Guide - Solaris

Last Published:
Product(s): InfoScale & Storage Foundation (7.4)
Platform: Solaris
  1. Section I. Introducing Veritas InfoScale
    1. Introducing Veritas InfoScale
      1.  
        About the Veritas InfoScale product suite
      2.  
        Components of the Veritas InfoScale product suite
  2. Section II. Solutions for Veritas InfoScale products
    1. Solutions for Veritas InfoScale products
      1.  
        Use cases for Veritas InfoScale products
      2.  
        Feature support across Veritas InfoScale 7.4 products
      3.  
        Using SmartMove and Thin Provisioning with Sybase databases
      4.  
        Finding Veritas InfoScale product use cases information
  3. Section III. Improving database performance
    1. Overview of database accelerators
      1.  
        About Veritas InfoScale product components database accelerators
    2. Improving database performance with Veritas Quick I/O
      1. About Quick I/O
        1.  
          How Quick I/O improves database performance
      2.  
        Tasks for setting up Quick I/O in a database environment
      3.  
        Creating DB2 database containers as Quick I/O files using qiomkfile Creating Sybase files as Quick I/O files using qiomkfile
      4.  
        Preallocating space for Quick I/O files using the setext command
      5.  
        Accessing regular VxFS files as Quick I/O files
      6.  
        Extending a Quick I/O file
      7.  
        Disabling Quick I/O
    3. Improving database performance with Veritas Cached Quick I/O
      1. About Cached Quick I/O
        1.  
          How Cached Quick I/O works in a Sybase environment
      2.  
        Tasks for setting up Cached Quick I/O
      3. Enabling Cached Quick I/O on a file system
        1.  
          Enabling and disabling the qio_cache_enable flag
        2.  
          Making Cached Quick I/O settings persistent across reboots and mounts
        3.  
          Using vxtunefs to obtain tuning information
      4. Determining candidates for Cached Quick I/O
        1.  
          About I/O statistics
        2.  
          Collecting I/O statistics
        3.  
          Effects of read-aheads on I/O statistics
        4.  
          Other tools for analysis
      5. Enabling and disabling Cached Quick I/O for individual files
        1.  
          Setting cache advisories for individual files
        2.  
          Making individual file settings for Cached Quick I/O persistent
        3.  
          Determining individual file settings for Cached Quick I/O using qioadmin
    4. Improving database performance with Veritas Concurrent I/O
      1. About Concurrent I/O
        1.  
          How Concurrent I/O works
      2. Tasks for enabling and disabling Concurrent I/O
        1.  
          Enabling Concurrent I/O for Sybase
        2.  
          Disabling Concurrent I/O for Sybase
  4. Section IV. Using point-in-time copies
    1. Understanding point-in-time copy methods
      1. About point-in-time copies
        1.  
          Implementing point-in time copy solutions on a primary host
        2.  
          Implementing off-host point-in-time copy solutions
      2.  
        When to use point-in-time copies
      3. About Storage Foundation point-in-time copy technologies
        1. Volume-level snapshots
          1.  
            Persistent FastResync of volume snapshots
          2.  
            Data integrity in volume snapshots
        2.  
          Storage Checkpoints
    2. Backing up and recovering
      1.  
        Storage Foundation and High Availability Solutions backup and recovery methods
      2. Preserving multiple point-in-time copies
        1.  
          Setting up multiple point-in-time copies
        2.  
          Refreshing point-in-time copies
        3.  
          Recovering from logical corruption
        4.  
          Off-host processing using refreshed snapshot images
      3. Online database backups
        1. Making a backup of an online database on the same host
          1.  
            Preparing a full-sized instant snapshot for a backup
          2.  
            Preparing a space-optimized snapshot for a database backup
          3.  
            Backing up a Sybase database on the same host
          4.  
            Resynchronizing a volume
        2. Making an off-host backup of an online database
          1.  
            Making an off-host backup of an online Sybase database
          2.  
            Resynchronizing a volume
      4. Backing up on an off-host cluster file system
        1.  
          Mounting a file system for shared access
        2.  
          Preparing a snapshot of a mounted file system with shared access
        3.  
          Backing up a snapshot of a mounted file system with shared access
        4.  
          Resynchronizing a volume from its snapshot volume
        5.  
          Reattaching snapshot plexes
      5. Database recovery using Storage Checkpoints
        1.  
          Creating Storage Checkpoints
        2.  
          Rolling back a database
    3. Backing up and recovering in a NetBackup environment
      1.  
        About Veritas NetBackup
      2.  
        About using NetBackup for backup and restore for Sybase
      3.  
        About using Veritas NetBackup to backup and restore Quick I/O files for Sybase
      4. Using NetBackup in an SFHA Solutions product environment
        1.  
          Clustering a NetBackup Master Server
        2.  
          Backing up and recovering a VxVM volume using NetBackup
        3.  
          Recovering a VxVM volume using NetBackup
    4. Off-host processing
      1.  
        Veritas InfoScale Storage Foundation off-host processing methods
      2. Using a replica database for decision support
        1. Creating a replica database on the same host
          1.  
            Preparing for the replica database
          2.  
            Creating a replica database
        2. Creating an off-host replica database
          1.  
            Setting up a replica database for off-host decision support
          2.  
            Resynchronizing the data with the primary host
          3.  
            Updating a warm standby Sybase ASE 12.5 database
          4.  
            Reattaching snapshot plexes
      3.  
        What is off-host processing?
      4.  
        About using VVR for off-host processing
    5. Creating and refreshing test environments
      1.  
        About test environments
      2.  
        Creating a test environment
      3.  
        Refreshing a test environment
    6. Creating point-in-time copies of files
      1. Using FileSnaps to create point-in-time copies of files
        1.  
          Using FileSnaps to provision virtual desktops
        2.  
          Using FileSnaps to optimize write intensive applications for virtual machines
        3.  
          Using FileSnaps to create multiple copies of data instantly
  5. Section V. Maximizing storage utilization
    1. Optimizing storage tiering with SmartTier
      1.  
        About SmartTier
      2.  
        About VxFS multi-volume file systems
      3.  
        About VxVM volume sets
      4.  
        About volume tags
      5.  
        SmartTier use cases for Sybase
      6.  
        Setting up a filesystem for storage tiering with SmartTier
      7.  
        Relocating old archive logs to tier two storage using SmartTier
      8.  
        Relocating inactive tablespaces or segments to tier two storage
      9.  
        Relocating active indexes to premium storage
      10.  
        Relocating all indexes to premium storage
    2. Optimizing storage with Flexible Storage Sharing
      1. About Flexible Storage Sharing
        1.  
          Limitations of Flexible Storage Sharing
      2.  
        About use cases for optimizing storage with Flexible Storage Sharing
      3.  
        Setting up an SFRAC clustered environment with shared nothing storage
      4.  
        Implementing the SmartTier feature with hybrid storage
      5.  
        Configuring a campus cluster without shared storage
  6. Section VI. Migrating data
    1. Understanding data migration
      1.  
        Types of data migration
    2. Offline migration from Solaris Volume Manager to Veritas Volume Manager
      1.  
        About migration from Solaris Volume Manager
      2. How Solaris Volume Manager objects are mapped to VxVM objects
        1.  
          Conversion of soft partitions
      3. Overview of the conversion process
        1.  
          Plan and prepare for the conversion
        2.  
          Set up the conversion
        3.  
          Perform the conversion
        4.  
          Perform post-conversion tasks
      4. Planning the conversion
        1.  
          Scheduling considerations
        2.  
          Schedule downtime
        3.  
          Check metadevices
        4.  
          Identify references by applications
      5. Preparing a Solaris Volume Manager configuration for conversion
        1.  
          Installing VxVM
      6. Setting up a Solaris Volume Manager configuration for conversion
        1.  
          Run preconvert
        2.  
          Run showconvert
        3.  
          Run convertname
        4.  
          Make backups
      7. Converting from the Solaris Volume Manager software to VxVM
        1.  
          Reboot the system
        2.  
          Change volume references
      8. Post conversion tasks
        1.  
          Improve volume layouts
        2.  
          Remove the Solaris Volume Manager software
      9.  
        Converting a root disk
    3. Online migration of a native file system to the VxFS file system
      1.  
        About online migration of a native file system to the VxFS file system
      2.  
        Administrative interface for online migration of a native file system to the VxFS file system
      3.  
        Migrating a native file system to the VxFS file system
      4. Migrating a source file system to the VxFS file system over NFS v3
        1.  
          Restrictions of NFS v3 migration
      5.  
        Backing out an online migration of a native file system to the VxFS file system
      6. VxFS features not available during online migration
        1.  
          Limitations of online migration
    4. Migrating storage arrays
      1.  
        Array migration for storage using Linux
      2.  
        Overview of storage mirroring for migration
      3.  
        Allocating new storage
      4.  
        Initializing the new disk
      5.  
        Checking the current VxVM information
      6.  
        Adding a new disk to the disk group
      7.  
        Mirroring
      8.  
        Monitoring
      9.  
        Mirror completion
      10.  
        Removing old storage
      11.  
        Post-mirroring steps
    5. Migrating data between platforms
      1. Overview of the Cross-Platform Data Sharing (CDS) feature
        1.  
          Shared data across platforms
        2.  
          Disk drive sector size
        3.  
          Block size issues
        4.  
          Operating system data
      2. CDS disk format and disk groups
        1. CDS disk access and format
          1. CDS disk types
            1.  
              Private and public regions
            2.  
              Disk access type auto
            3.  
              Platform block
            4.  
              AIX coexistence label
            5.  
              HP-UX coexistence label
            6.  
              VxVM ID block
          2. About Cross-platform Data Sharing (CDS) disk groups
            1.  
              Device quotas
            2.  
              Minor device numbers
        2.  
          Non-CDS disk groups
        3. Disk group alignment
          1. Alignment values
            1.  
              Dirty region log alignment
          2.  
            Object alignment during volume creation
      3. Setting up your system to use Cross-platform Data Sharing (CDS)
        1. Creating CDS disks from uninitialized disks
          1.  
            Creating CDS disks by using vxdisksetup
          2.  
            Creating CDS disks by using vxdiskadm
        2. Creating CDS disks from initialized VxVM disks
          1.  
            Creating a CDS disk from a disk that is not in a disk group
          2.  
            Creating a CDS disk from a disk that is already in a disk group
        3. Creating CDS disk groups
          1.  
            Creating a CDS disk group by using vxdg init
          2.  
            Creating a CDS disk group by using vxdiskadm
        4.  
          Converting non-CDS disks to CDS disks
        5.  
          Converting a non-CDS disk group to a CDS disk group
        6.  
          Verifying licensing
        7.  
          Defaults files
      4. Maintaining your system
        1. Disk tasks
          1.  
            Changing the default disk format
          2.  
            Restoring CDS disk labels
        2. Disk group tasks
          1.  
            Changing the alignment of a disk group during disk encapsulation
          2.  
            Changing the alignment of a non-CDS disk group
          3.  
            Splitting a CDS disk group
          4.  
            Moving objects between CDS disk groups and non-CDS disk groups
          5.  
            Moving objects between CDS disk groups
          6.  
            Joining disk groups
          7.  
            Changing the default CDS setting for disk group creation
          8.  
            Creating non-CDS disk groups
          9.  
            Upgrading an older version non-CDS disk group
          10.  
            Replacing a disk in a CDS disk group
          11.  
            Setting the maximum number of devices for CDS disk groups
          12.  
            Changing the DRL map and log size
          13.  
            Creating a volume with a DRL log
          14.  
            Setting the DRL map length
        3. Displaying information
          1.  
            Determining the setting of the CDS attribute on a disk group
          2.  
            Displaying the maximum number of devices in a CDS disk group
          3.  
            Displaying map length and map alignment of traditional DRL logs
          4.  
            Displaying the disk group alignment
          5.  
            Displaying the log map length and alignment
          6.  
            Displaying offset and length information in units of 512 bytes
        4.  
          Default activation mode of shared disk groups
        5.  
          Additional considerations when importing CDS disk groups
      5. File system considerations
        1.  
          Considerations about data in the file system
        2.  
          File system migration
        3. Specifying the migration target
          1.  
            Examples of target specifications
        4. Using the fscdsadm command
          1.  
            Checking that the metadata limits are not exceeded
          2. Maintaining the list of target operating systems
            1.  
              Adding an entry to the list of target operating systems
            2.  
              Removing an entry from the list of target operating systems
            3.  
              Removing all entries from the list of target operating systems
            4.  
              Displaying the list of target operating systems
          3.  
            Enforcing the established CDS limits on a file system
          4.  
            Ignoring the established CDS limits on a file system
          5.  
            Validating the operating system targets for a file system
          6.  
            Displaying the CDS status of a file system
        5.  
          Migrating a file system one time
        6. Migrating a file system on an ongoing basis
          1.  
            Stopping ongoing migration
        7.  
          When to convert a file system
        8. Converting the byte order of a file system
          1.  
            Importing and mounting a file system from another system
      6.  
        Alignment value and block size
      7.  
        Disk group alignment and encapsulated disks
      8.  
        Disk group import between Linux and non-Linux machines
      9.  
        Migrating a snapshot volume
    6. Migrating from Oracle ASM to Veritas File System
      1.  
        About the migration
      2.  
        Pre-requisites for migration
      3.  
        Preparing to migrate
      4.  
        Migrating Oracle databases from Oracle ASM to VxFS
  7. Section VII. Veritas InfoScale 4K sector device support solution
    1. Veritas InfoScale 4k sector device support solution
      1.  
        About 4K sector size technology
      2.  
        Veritas InfoScale unsupported configurations
      3.  
        Migrating VxFS file system from 512-bytes sector size devices to 4K sector size devices

Making an off-host backup of an online Sybase database

The procedure for off-host database backup is designed to minimize copy-on-write operations that can impact system performance. You can use this procedure whether the database volumes are in a cluster-shareable disk group or a private disk group on a single host. If the disk group is cluster-shareable, you can use a node in the cluster for the off-host processing (OHP) host. In that case, you can omit the steps to split the disk group and deport it to the OHP host. The disk group is already accessible to the OHP host. Similarly, when you refresh the snapshot you do not need to reimport the snapshot and rejoin the snapshot disk group to the primary host.

To make an off-host backup of an online Sybase database

  1. On the primary host, add one or more snapshot plexes to the volume using this command:
    # vxsnap -g database_dg addmir database_vol [nmirror=N] \
     [alloc=storage_attributes]

    By default, one snapshot plex is added unless you specify a number using the nmirror attribute. For a backup, you should usually only require one plex. You can specify storage attributes (such as a list of disks) to determine where the plexes are created.

  2. Suspend updates to the volumes. As the Sybase database administrator, put the database in quiesce mode by using a script such as that shown in the example.
    #!/bin/ksh
    #
    # script: backup_start.sh
    #
    # Sample script to quiesce example Sybase ASE database.
    #
    # Note: The "for external dump" clause was introduced in Sybase
    # ASE 12.5 to allow a snapshot database to be rolled forward.
    # See the Sybase ASE 12.5 documentation for more information.
    
    isql -Usa -Ppassword -SFMR <<!
    quiesce database tag hold database1[, database2]... [for 
    external dump]
    go
    quit
    !
  3. Use the following command to make a full-sized snapshot, snapvol, of the tablespace volume by breaking off the plexes that you added in step 1 from the original volume:
    # vxsnap -g database_dg make \
       source=database_vol/newvol=snapvol/nmirror=N \
       [alloc=storage_attributes]

    The nmirror attribute specifies the number of mirrors, N, in the snapshot volume.

    If a database spans more than one volume, specify all the volumes and their snapshot volumes as separate tuples on the same line, for example:

    # vxsnap -g database_dg make source=database_vol1/snapvol=snapvol1 \
       source=database_vol/snapvol=snapvol2 \
       source=database_vol3/snapvol=snapvol3 alloc=ctlr:c3,ctlr:c4

    This step sets up the snapshot volumes ready for the backup cycle, and starts tracking changes to the original volumes.

  4. Release all the tablespaces or databases from quiesce mode. As the Sybase database administrator, release the database from quiesce mode using a script such as that shown in the example.
    #!/bin/ksh
    #
    # script: backup_end.sh
    #
    # Sample script to release example Sybase ASE database from quiesce 
    # mode.
    
    isql -Usa -Ppassword -SFMR <<!
    quiesce database tag release
    go
    quit
    !
  5. If the primary host and the snapshot host are in the same cluster, and the disk group is shared, the snapshot volume is already accessable to the OHP host. Skip to step 9.

    If the OHP host is not in the cluster, perform the following steps to make the snapshot volume accessible to the OHP host.

    On the primary host, split the disks containing the snapshot volumes into a separate disk group, snapvoldg, from the original disk group, database_dg using the following command:

    # vxdg split database_dg snapvoldg snapvol ...
  6. On the primary host, deport the snapshot volume's disk group using the following command:
    # vxdg deport snapvoldg
  7. On the OHP host where the backup is to be performed, use the following command to import the snapshot volume's disk group:
    # vxdg import snapvoldg
  8. VxVM will recover the volumes automatically after the disk group import unless it is set to not recover automatically. Check if the snapshot volume is initially disabled and not recovered following the split.

    If a volume is in the DISABLED state, use the following command on the OHP host to recover and restart the snapshot volume:

    # vxrecover -g snapvoldg -m snapvol ...
  9. On the OHP host, back up the snapshot volumes. If you need to remount the file system in the volume to back it up, first run fsck on the volumes. The following are sample commands for checking and mounting a file system:
    # fsck -F vxfs /dev/vx/rdsk/snapvoldg/snapvol
    # mount -F vxfs /dev/vx/dsk/snapvoldg/snapvol mount_point

    Back up the file system using a command such as bpbackup in Veritas NetBackup. After the backup is complete, use the following command to unmount the file system.

    # umount mount_point
  10. If the primary host and the snapshot host are in the same cluster, and the disk group is shared, the snapshot volume is already accessible to the primary host. Skip to step 14.

    If the OHP host is not in the cluster, perform the following steps to make the snapshot volume accessible to the primary host.

    On the OHP host, use the following command to deport the snapshot volume's disk group:

    # vxdg deport snapvoldg
  11. On the primary host, re-import the snapshot volume's disk group using the following command:
    # vxdg [-s] import snapvoldg

    Note:

    Specify the -s option if you are reimporting the disk group to be rejoined with a shared disk group in a cluster.

  12. On the primary host, use the following command to rejoin the snapshot volume's disk group with the original volume's disk group:
    # vxdg join snapvoldg database_dg
  13. VxVM will recover the volumes automatically after the join unless it is set not to recover automatically. Check if the snapshot volumes are initially disabled and not recovered following the join.

    If a volume is in the DISABLED state, use the following command on the primary host to recover and restart the snapshot volume:

    # vxrecover -g database_dg -m snapvol
  14. On the primary host, reattach the snapshot volumes to their original volume using the following command:
    # vxsnap -g database_dg reattach snapvol source=database_vol \
       [snapvol2 source=database_vol2]...

    For example, to reattach the snapshot volumes snapvol1, snapvol2 and snapvol3:

    # vxsnap -g database_dg reattach snapvol1 source=database_vol1 \
       snapvol2 source=database_vol2 snapvol3 source=database_vol3

    While the reattached plexes are being resynchronized from the data in the parent volume, they remain in the SNAPTMP state. After resynchronization is complete, the plexes are placed in the SNAPDONE state. You can use the vxsnap print command to check on the progress of synchronization.

    Repeat steps 2 through 14 each time that you need to back up the volume.