Veritas InfoScale™ 7.4 Solutions Guide - Solaris
- Section I. Introducing Veritas InfoScale
- Section II. Solutions for Veritas InfoScale products
- Section III. Improving database performance
- Overview of database accelerators
- Improving database performance with Veritas Quick I/O
- About Quick I/O
- Improving database performance with Veritas Cached Quick I/O
- Improving database performance with Veritas Concurrent I/O
- Section IV. Using point-in-time copies
- Understanding point-in-time copy methods
- Backing up and recovering
- Preserving multiple point-in-time copies
- Online database backups
- Backing up on an off-host cluster file system
- Database recovery using Storage Checkpoints
- Backing up and recovering in a NetBackup environment
- Off-host processing
- Creating and refreshing test environments
- Creating point-in-time copies of files
- Section V. Maximizing storage utilization
- Optimizing storage tiering with SmartTier
- Optimizing storage with Flexible Storage Sharing
- Optimizing storage tiering with SmartTier
- Section VI. Migrating data
- Understanding data migration
- Offline migration from Solaris Volume Manager to Veritas Volume Manager
- How Solaris Volume Manager objects are mapped to VxVM objects
- Overview of the conversion process
- Planning the conversion
- Preparing a Solaris Volume Manager configuration for conversion
- Setting up a Solaris Volume Manager configuration for conversion
- Converting from the Solaris Volume Manager software to VxVM
- Post conversion tasks
- Online migration of a native file system to the VxFS file system
- Migrating a source file system to the VxFS file system over NFS v3
- VxFS features not available during online migration
- Migrating storage arrays
- Migrating data between platforms
- Overview of the Cross-Platform Data Sharing (CDS) feature
- CDS disk format and disk groups
- Setting up your system to use Cross-platform Data Sharing (CDS)
- Maintaining your system
- Disk tasks
- Disk group tasks
- Displaying information
- File system considerations
- Specifying the migration target
- Using the fscdsadm command
- Maintaining the list of target operating systems
- Migrating a file system on an ongoing basis
- Converting the byte order of a file system
- Migrating from Oracle ASM to Veritas File System
- Section VII. Veritas InfoScale 4K sector device support solution
How Quick I/O improves database performance
The benefits of using Quick I/O are:
Improved performance and processing throughput by having Quick I/O files act as raw devices.
Ability to manage Quick I/O files as regular files, which simplifies administrative tasks such as allocating, moving, copying, resizing, and backing up DB2 containers.
Ability to manage Quick I/O files as regular files, which simplifies administrative tasks such as allocating, moving, copying, resizing, and backing up Sybase dataservers.
Quick I/O's ability to access regular files as raw devices improves database performance by:
Table:
Quick I/O feature | Advantage |
---|---|
Supporting direct I/O | I/O on files using read() and write() system calls typically results in data being copied twice: once between user and kernel space, and later between kernel space and disk. In contrast, I/O on raw devices is direct. That is, data is copied directly between user space and disk, saving one level of copying. As with I/O on raw devices, Quick I/O avoids extra copying. |
Avoiding kernel write locks on database files | When database I/O is performed using the write() system call, each system call acquires and releases a write lock inside the kernel. This lock prevents multiple simultaneous write operations on the same file. Because database systems usually implement their own locking to manage concurrent access to files, per file writer locks unnecessarily serialize I/O operations. Quick I/O bypasses file system per file locking and lets the database server control data access. |
Avoiding double buffering | Most database servers maintain their own buffer cache and do not need the file system buffer cache. Database data cached in the file system buffer is therefore redundant and results in wasted memory and extra system CPU utilization to manage the buffer. By supporting direct I/O, Quick I/O eliminates double buffering. Data is copied directly between the relational database management system (RDBMS) cache and disk, which lowers CPU utilization and frees up memory that can then be used by the database server buffer cache to further improve transaction processing throughput. |
Supporting kernel asynchronous I/O | Solaris kernel asynchronous I/O is a form of I/O that performs non-blocking system level reads and writes, allowing the system to handle multiple I/O requests simultaneously. Operating systems such as Solaris provide kernel support for asynchronous I/O on raw devices, but not on regular files. As a result, even if the database server is capable of using asynchronous I/O, it cannot issue asynchronous I/O requests when the database runs on file systems. Lack of asynchronous I/O significantly degrades performance. Quick I/O enables the database server to take advantage of kernel-supported asynchronous I/O on file system files accessed using the Quick I/O interface. |