Veritas InfoScale™ 8.0.2 Storage and Availability Management for Oracle Databases - AIX, Linux, Solaris
- Section I. Storage Foundation High Availability (SFHA) management solutions for Oracle databases
- Overview of Storage Foundation for Databases
- About Veritas File System
- Overview of Storage Foundation for Databases
- Section II. Deploying Oracle with Veritas InfoScale products
- Deployment options for Oracle in a Storage Foundation environment
- Deploying Oracle with Storage Foundation
- Setting up disk group for deploying Oracle
- Creating volumes for deploying Oracle
- Creating VxFS file system for deploying Oracle
- Deploying Oracle in an off-host configuration with Storage Foundation
- Deploying Oracle with High Availability
- Deploying Oracle with Volume Replicator (VVR) for disaster recovery
- Deployment options for Oracle in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving Oracle database performance
- About database accelerators
- Improving database performance with Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager in the Veritas InfoScale products environment
- Improving database performance with Veritas Cached Oracle Disk Manager
- About Cached ODM in SFHA environment
- Configuring Cached ODM in SFHA environment
- Administering Cached ODM settings with Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Generating summary reports of historical activity by using Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Improving database performance with Quick I/O
- About Quick I/O
- Improving database performance with Cached Quick I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Volume-level snapshots
- About Reverse Resynchronization in volume-level snapshots (FlashSnap)
- Storage Checkpoints
- About FileSnaps
- Considerations for Oracle point-in-time copies
- Administering third-mirror break-off snapshots
- Administering space-optimized snapshots
- Creating a clone of an Oracle database by using space-optimized snapshots
- Administering Storage Checkpoints
- Database Storage Checkpoints for recovery
- Administering FileSnap snapshots
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for Oracle
- Understanding storage tiering with SmartTier
- Configuring and administering SmartTier
- Configuring SmartTier for Oracle
- Optimizing database storage using SmartTier for Oracle
- Extent balancing in a database environment using SmartTier for Oracle
- Configuring SmartTier for Oracle
- SmartTier use cases for Oracle
- Compressing files and databases to optimize storage costs
- Using the Compression Advisor tool
- Section VII. Managing Oracle disaster recovery
- Section VIII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- About tuning Veritas Volume Manager (VxVM)
- About tuning VxFS
- About tuning Oracle databases
- About tuning Solaris for Oracle
- Troubleshooting SFDB tools
- About troubleshooting Storage Foundation for Databases (SFDB) tools
- About the vxdbd daemon
- Resources for troubleshooting SFDB tools
- Manual recovery of Oracle database
- Storage Foundation for Databases command reference for the releases prior to 6.0
- Preparing storage for Database FlashSnap
- About creating database snapshots
- FlashSnap commands
- Creating a snapplan (dbed_vmchecksnap)
- Validating a snapplan (dbed_vmchecksnap)
- Displaying, copying, and removing a snapplan (dbed_vmchecksnap)
- Creating a snapshot (dbed_vmsnap)
- Backing up the database from snapshot volumes (dbed_vmclonedb)
- Cloning a database (dbed_vmclonedb)
- Guidelines for Oracle recovery
- Database Storage Checkpoint Commands
- Section IX. Reference
- Appendix A. VCS Oracle agents
- Appendix B. Sample configuration files for clustered deployments
- Appendix C. Database FlashSnap status information
- Appendix D. Using third party software to back up files
About obtaining volume I/O statistics
If your database is created on a single file system that is on a single volume, there is typically no need to monitor the volume I/O statistics. If your database is created on multiple file systems on multiple volumes, or the volume configurations have changed over time, it may be necessary to monitor the volume I/O statistics for the databases.
Use the vxstat command to access information about activity on volumes, plexes, subdisks, and disks under VxVM control, and to print summary statistics to the standard output. These statistics represent VxVM activity from the time the system initially booted or from the last time the counters were reset to zero. If no VxVM object name is specified, statistics from all volumes in the configuration database are reported. Use the -g option to specify the database disk group to report statistics for objects in that database disk group.
VxVM records the following I/O statistics:
count of operations
number of blocks transferred (one operation can involve more than one block)
average operation time (which reflects the total time through the VxVM interface and is not suitable for comparison against other statistics programs)
VxVM records the preceding three pieces of information for logical I/Os, including reads, writes, atomic copies, verified reads, verified writes, plex reads, and plex writes for each volume. VxVM also maintains other statistical data such as read failures, write failures, corrected read failures, corrected write failures, and so on. In addition to displaying volume statistics, the vxstat command is capable of displaying more detailed statistics on the components that form the volume. For detailed information on available options, refer to the vxstat(1M) manual page.
To reset the statistics information to zero, use the -r option. You can reset the statistics information for all objects or for only those objects that are specified. Resetting just prior to an operation makes it possible to measure the impact of that particular operation.
The following is an example of output produced using the vxstat command:
OPERATIONS BLOCKS AVG TIME(ms)
TYP NAME READ WRITE READ WRITE READ WRITE
vol blop 0 0 0 0 0.0 0.0
vol foobarvol 0 0 0 0 0.0 0.0
vol rootvol 73017 181735 718528 1114227 26.8 27.9
vol swapvol 13197 20252 105569 162009 25.8 397.0
vol testvol 0 0 0 0 0.0 0.0
Additional information is available on how to use the vxstat output to identify volumes that have excessive activity and how to reorganize, change to a different layout, or move these volumes.
Additional volume statistics are available for RAID-5 configurations.
See the vxstat(1M) manual page.
See the "Performance Monitoring" section of the "Performance Monitoring and Tuning" chapter in the Storage Foundation Administrator's Guide.