Cluster Server 7.3.1 Configuration and Upgrade Guide - Solaris
- Section I. Configuring Cluster Server using the script-based installer
- I/O fencing requirements
- Preparing to configure VCS clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring VCS
- Configuring a secure cluster node by node
- Verifying and updating licenses on the system
- Configuring VCS clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Section II. Automated configuration using response files
- Performing an automated VCS configuration
- Performing an automated I/O fencing configuration using response files
- Section III. Manual configuration
- Manually configuring VCS
- Configuring LLT manually
- Configuring VCS manually
- Configuring VCS in single node mode
- Modifying the VCS configuration
- Manually configuring the clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the VCS cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Manually configuring VCS
- Section IV. Upgrading VCS
- Planning to upgrade VCS
- Performing a VCS upgrade using the installer
- Tasks to perform after upgrading to 2048 bit key and SHA256 signature certificates
- Performing an online upgrade
- Performing a rolling upgrade of VCS
- Performing a phased upgrade of VCS
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated VCS upgrade using response files
- Upgrading VCS using Live Upgrade and Boot Environment upgrade
- Planning to upgrade VCS
- Section V. Adding and removing cluster nodes
- Adding a node to a single-node cluster
- Adding a node to a single-node cluster
- Adding a node to a multi-node VCS cluster
- Manually adding a node to a cluster
- Setting up the node to run in secure mode
- Configuring I/O fencing on the new node
- Adding a node using response files
- Removing a node from a VCS cluster
- Removing a node from a VCS cluster
- Removing a node from a VCS cluster
- Adding a node to a single-node cluster
- Section VI. Installation reference
- Appendix A. Services and ports
- Appendix B. Configuration files
- Appendix C. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Manually configuring LLT over UDP using IPv6
- Appendix D. Configuring the secure shell or the remote shell for communications
- Appendix E. Installation script options
- Appendix F. Troubleshooting VCS configuration
- Appendix G. Sample VCS cluster setup diagrams for CP server-based I/O fencing
- Appendix H. Reconciling major/minor numbers for NFS shared disks
- Appendix I. Upgrading the Steward process
About deciding the order of existing coordination points
You can decide the order in which coordination points can participate in a race during a network partition. In a network partition scenario, I/O fencing attempts to contact coordination points for membership arbitration based on the order that is set in the vxfentab
file.
When I/O fencing is not able to connect to the first coordination point in the sequence it goes to the second coordination point and so on. To avoid a cluster panic, the surviving subcluster must win majority of the coordination points. So, the order must begin with the coordination point that has the best chance to win the race and must end with the coordination point that has the least chance to win the race.
For fencing configurations that use a mix of coordination point servers and coordination disks, you can specify either coordination point servers before coordination disks or disks before servers.
Note:
Disk-based fencing does not support setting the order of existing coordination points.
Considerations to decide the order of coordination points
Choose the coordination points based on their chances to gain membership on the cluster during the race and hence gain control over a network partition. In effect, you have the ability to save a partition.
First in the order must be the coordination point that has the best chance to win the race. The next coordination point you list in the order must have relatively lesser chance to win the race. Complete the order such that the last coordination point has the least chance to win the race.